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,Received 4 January 1994 

Abstract. Coherent states for a family of isospecval oscillator Hamiltonians are derived from 
a suitable choice of annihilation and creation operators. The Fock-Bargmann representation is 
also considered. 

1. Introduction 

Starting from the harmonic oscillator, a family of isospectral Hamiltonians has been obtained 
[I]  using a generalization of the well known factorization method [2]. A connection 
has been made between this method and the supersymmehy transformation [3]. In this 
way, the harmonic oscillator and the isospectral family of Hamiltonians may be seen as 
supersymmetric (SUSY) partners [4]. This presentation of the factorization method has the 
advantage of giving a global view of the different Hamiltonians with which we are dealing. 
It also provides a way of constructing an orthonormal set of basis vectors for the isospectral 
Hamiltonians departing from the usual harmonic oscillator basis. 

In recent years, however, the necessity for studying alternative sets of basis vectors 
(not necessarily orthonotmals) has been realized. The most important of these is the set 
of coherent states [5,6].  For the harmonic oscillator, they are very well known and have 
proved to be useful in many branches of physics [ 5 ] .  For the isospecbal Hamiltonians 
derived in 111, there has been no such study. The goal of this paper is to fill this gap by 
making such a study. It will be shown that this can be achieved by appropriately defining 
new annihilation and creation operators. 

The plan of the paper is as follows. In section 2, we give the family of isospectral 
Hamiltonians, their eigenstates and a pair of associated annihilation and creation operators. 
In section 3, we construct the coherent states and analyse their dynamical evolution and their 
overcompleteness. The harmonic oscillator limit is considered in section 4. It leads to an 
explicit calculation of the uncertainty relation. Finally, the Fock-Bargmann representation 
is studied in section 5 .  

2. The factorization method and isospectral oscillators 

We will start with the SUSY approach to the factorization method. Let us consider the 
following operators: 
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where Ll'(x) is the derivative of U@), an arbitrary function of x .  We get a SUSY Hamiltonian 
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[41 

0 H- 0 QQ+ 

H* are the SUSY partners given explicitly as 

1 dZ 
H* = + V*(x) 2 dx2 

with 

V*(x) = ;[(cry =F U"]. (2.4) 

It is well known that the ground state of H+ has zero energy provided that the ground-state 
wavefunction 

= N~exp(-u(x)) (2.5) 

is squareintegrable. Moreover, the eigenfunctions and eigenvalues of H* are related [3]. 
This means that starting, for example, with H+ as a known solvable problem, we construct 
a new Hamiltonian H- which is also solvable. 

Evidently, for some simple cases such as the harmonic oscillator, the previous result is 
hivial. Nevertheless, it has been shown that this method produces a large class of non-trivial 
solvable potentials if, in addition, they verify some specific properties [3]. 

Here we want to insist on another point resulting from the factorization: the non-unicity 
of the definition of Q and Q+. This was first observed by Mielnik in the harmonic oscillator 
case and has been formalized for arbitrary potentials of the form (2.4) by Nieto [4] in the 
SUSY context. Indeed, if we look for operators b and bt of the form 

such that bbt coincides with H-, one gets a Riccati equation for B ( x )  

8' + 82 = U" + (U')2 

the general solution of which is 

B ( x )  = U'@) + 
where 

e-2[1(=) 
h E w. @ A ( x )  = + i," e-WW dy 

The SUSY Hamiltonian corresponding to the operators (2.6) now takes the form 

Hi,SUSY = (HF HA.- O ) = (b,, b;t) 
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where H A , -  = H - ,  as required, but HA.,.  is 

HA,+ = H+ - ' $ i ( X ) .  (2.11) 

An interpretation of this Hamiltonian in terms of the Cel'fand-Levitan method may be 
found in Nieto [4]. It is essentially different from H+ except in the limit [AI + 03. 

The partkular case we are interested in discussing further is that of the harmonic 
oscillator. Indeed, let us take V ( x )  = fxz  so that the operators (2.1) become, evidently, 
the annihilation and creation operators for the harmonic oscillator Hamiltonian 

1 d2 1 
2dx2 2 

H = + - x 2  (2.12) 

and 

a+a = H - 1 aa+ = H + ?. 1 (2.13) 2 

The factorization in terms of the operators b and b' then leads to 

b'b = HA - f bb' = H + f (2.14) 

where 

with 

(2.15) 

(2.16) 

To have an idea of the behaviour of VA(X) ,  we have plotted it for different values of A 
in figure 1. If we want V A ( X )  to be non-singular, we must have [ A I  > &/2 [l]. Notice 
that for IAl + bo, HA -+ H .  

Due to the relation 

Hhb' = b'(H + 1) (2.17) 

it is easy to see that the states 

le,) = b t ~ h - l ) / J i i  n = ~ 2 , .  . . (2.18) 

are normalized orthogonal eigenvectors of HA with eigenvalues E,, = n + 1. The states 

(2.19) 

are the normalized eigenstates of the harmonic oscillator. Notice that the set {IO,,),n = 
1,2, ... } is not complete. The missing vector I&), orthogonal to the others, verifies 
bl8o) = 0 and is given in the coordinate representation by 
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Figure 1. The isospectral oscilla~or potentials VA(X). 

It is an eigenvector of HA with eigenvalue 4. The set {len), n = 0, I ,  2 , .  . .) is now complete 
in L2(R), therefore HA is a Hamiltonian with a spectrum equal to that of the harmonic 
oscillator. 

We are interested now in identifying the annihilation and creation operators for the 
Hamiltonian HA. Let us denote them A and At. It can easily be seen [I] that they are 
simply 

A = b+ab At = btatb. (2.21) 

The action of the whole set of operators acting on the states of the harmonic oscillator 
(l@,J), and on the generalized oscillator states [I&)), can easily be visualized in figure 2 
and is summarized by the following formulae: 

bl&) = Alh-1) b'lh) = ml&+l) .  (2.22) 

3. Coherent states 

It is well known that there are several non-equivalent definitions of coherent states [5,6]. 
One of the possibilities is to look for the eigenstates of an annihilation operator. We have 
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Figure 2. The action of various operaton on the basis vectors. 

seen that A ,  given in (2.21), is such an operator and will be used to derive the coherent 
states associated with our family of Hamiltonians. In other words, the state lz) for which 
we are looking must verify 

Alz) = zlz). (3.1) 

Here, the connection with a possible group-theoretical approach cannot be applied 
because, in opposition to the harmonic oscillator, the operators A and A+ do not give 
a closed algebra. Although [ A ,  A+] # I, we can find an operator B such that 

[ B ,  A+]  = I [ A ,  E'] = I. (3.2) 

This is given by 

1 
N(1f N)b' 

B = b+a 

This fact can easily be proved by using the equality 

f ( H d b +  = b + f ( H  + 1) 

(3.3) 

(3.4) 

for an arbitrary function f. It is then easy to rewrite lz) (up to normalization) as 

IZ) = eZB+ io1 ) (3.5) 

but this does not correspond to the action of a unitary representation of either of the two 
algebras in (3.2). 
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Let us now compute lz) explicitly using (3.1). We take 

so that 

Then, all the coefficients are given by 

m=O,1 ,2  ,.... (3.8) 

The dependence on a1 is removed by imposing the normalization and choosing it to be real. 
We find 

2" 

m ! , / m a l  
a0 = 0 U,+[ = 

(3.9) 2 - I t 2  ai = [oFz(1, 2; IzI )I 

where oFz(1.2; lzI2) is a generalized hypergeometric function defined as [7] 

(3.10) 

From this expression, it is clear that &(1,2; 1~1 ' )  is a positive definite function on C with 
radial symmeny. The final expression for the coherent state is 

(3.1 1) 

We see that z = 0 is a doubly degenerate eigenvalue for A. The corresponding eigenvectors 
are lo) = Is,) and leo). 

Let us analyse now the completeness (indeed, the overcompleteness) of the set 
(/SO), 12); z E 63. We are looking for the resolution of the identity on H. As 180) is 
'isolated' from the other states [lz)]. this resolution of the identity must take the form 

(3.12) 

where the measure dp(z) has to be determined. As there is no group structure involved in 
our treatment, it does not make sense to look for an invariant measure. If we suppose that 
d@(z) depends only on 121, it can be determined as in 181. Indeed, let us take 

dp(z) =oF~(1.2;r2)h(r2)rdrdp z = d s .  (3.13) 

Then, performing the integral in the angular variable p, we get 
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In order to recover the resolution of the identity in terms of the basis [le,)}, we must have 

Then, it is clear that the function h ( x )  we are looking for is the inverse Mellin transform 
of (r(s))2r(s + I ) / R .  It is evaluated in appendix A. The result is 

3 y  x ( l0gx)Z  log x 
oF2(2,2; - x )  - -oF2(1, 1; - x )  

2ir R 
h ( x )  = -- + 

H 

(3.16) 

where y is Euler’s constant and yn = +(I + n )  = 1 + f + . . . + - y .  The previous result, 
along with (3.13), gives us a positive measure for the case we are considering. Notice that, 
although h(rz)  is singular at the origin (as is clear from equation (3.16)), the measure is 
not. 

There are two main consequences arising from the former result. First, we can express 
any coherent state lz‘) in terms of the others 

The kernel (zlz’) is easy to evaluate from (3.11) 

(3.18)  

and it is trivial to prove that this is a reproducing kernel, that is 

/(z’lz)(zlz”) dfi(z) = (z’lz”) Id), lz”) # 16’0). (3.19) 

Second, an arbitrary element of the Hilbert space ‘FI, let us call it Ig), can be written in 
terms of the coherent states 

(3.20) 

where go = (Oolg) and 

The function t ( z ,  i) and the number go determine completely the state Jg)‘E H. 
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Let us now consider the dynamical evolution of the coherent states, which is, indeed, 
quite simple, due to the fact that the eigenvalues of HA are the same as those of the harmonic 
oscillator. More precisely, 

(3.22) 

We can also compute the expected value of the Hamiltonian HA in a coherent state: 

(3.23) 

4. The harmonic oscillator limit 

It is clear from (2.15) and (2.16) that the uniparametric family HL tends to the harmonic 
oscillator Hamiltonian in the limit III + CO. Let us now consider this limit in detail to see 
if there is a relationship between the coherent states we have computed and the harmonic 
oscillator ones. In the limit, p ( x )  + x ,  and therefore b + a and b+ + a+. Then, we get 

We also have 160) + [$bo). This is not evident from (2.20), but notice that the normalization 
constant CO also depends on I in a non-trivial way. Nevertheless, the correct limit comes 
from the definition of 180); that is, bl80) = 0. The operator A goes to A0 = u+u2. As a 
consequence, the coherent states given in (3.1 1 )  become 

which are not the habitual coherent states. They have an identity resolution similar to (3.12), 
indeed, 

In = I@o)(@oI+ / Iz)oo(zld&) (4.3) 

where the measure d@(z) is the one computed in section 3, given by (3.13) and (3.16). 
The time evolution of [ z ) ~  and the expected value o(z[Hlz)o are the same as those found in 
(3.22) and (3.23). 
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For the state Ir), i t  is very difficult to compute the expectation values of the position 
and momentum operators, but for the state I Z ) ~  the problem can be solved easily. Let us 
consider the state Iz)o given in (4.2). It is very well known that the position and momentum 
operators can be written in terms of the creation and annihilation operators a+. a 

Using the action of a+ and U on the state lqn}, we have 

In a similar way, we obtain 

For the momentum operator we have similar results 

(4.4) 

(4.10) 
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If we define the function 

D J Fernrindez C et a1 

(4.11) oFz(l, 2; lzlZ)oFz(2, 3; 1~1’) - 20F2(2.2; I Z I ~ ) ~  
oFz(l, 2; l Z W  e(lzl) = 

we can write the uncertainty relation for this case as 

(A:)@$) = d($ + ~1zI2@(lzl) + [(Rez)(Imz)e(lz1)I2. (4.12) 

A plot of this function is shown in figure 3. It can be proved rigorously that i < 
(A;)(A$) <.  ;. Then, (A.?)(Ab) is almost at its minimum, suggesting the possibility 
of using Iz)o as quasiclassical states in the same sense as the usual coherent states. 

Figure 3. The uncertainty producf (A.;)(Aj) as a function of L. 

5. The Fock-Bargmann representation 

It is well known [6,9] that for the harmonic oscillator it is possible to find a realization of 
the Hilbert space where any state vector is described by an entire function. The same is 
true for the coherent states associated with the Lie algebra su(1. 1) [8, IO]. Next, we will 
show that we can construct a similar realization for the problem under study. To achieve 
this, we can use the coherent states lz) or their limit I&. The result is going to be the same 
and, therefore, we will work with lz) given in (3.11). 

Let us remember that the Hilbert space ‘H is generated by the basis vectors 
[IOo), IOl ) ,  IOz), , , .). We have already seen that the state 180) is isolated from the others 
in the sense that it is an atypical coherent state. Let us call ‘Ho the one-dimensional 
subspace generated by 160) and ‘HI the Hilbert space generated by {16’1), IOZ), . . .) so that 
31 = ‘Hno @ ‘HI. From now on, we are going to concentrate on ‘HI. A vector lg) E ‘HI is 
characterized by go = 0 and i ( z ,  i) given in (3.21). 
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A realization of HI as a space 7 of entire analytic functions is obtained by taking 

This is related to I(z, i) by 

and its norm is 

1Ig1l2 = (gig) = I lg(z)l2h(lzI2)dz = I Ig(z)12du(e) (5.3) 

due to definition (3.13) of the measure. 

inequality) 
Let us study the functional space F. From the relation (issued from the Schwarz 

(5.4) 

we can show that g(z) is an entire function of order f and type 1 (see appendix B). 
Therefore, F is a subspace of the space of entire functions of growth (t, %) composed of 
functions of finite norm with respect to the measure du(z) (the usual coherent states are 
related to the Segal-Bargmann space of entire functions of growth (f,2)). In particular, 
the entire function corresponding to a coherent state la) is 

where we have used the kernel given in (3.18). 
The functions &+l(z) defined by 

n = 0, 1,2, . . . 2” 

n ! m  
0.+l(Z) = 

form an orthonormal basis of 7 so that the function g(z) may be written 

m 

Let us mention that the function 

(5.7) 

closely related to the reproducing kernel, plays the role of the delta function in the space 
7 with respect to the measure du(z’). This fact is very easy to prove 
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To summarize, we have proved that, to a given lg) E HI, we can associate a function 
g(z) E F entirely of growth (3, i) and normalizable. On the other hand, it is obvious that 
for every g(z) E F we can build a ket lg) E H I .  

To finish, we need to know the abstract realization of the operators that act on 3 as a 
multiplication by z and as a derivation a/az. Let us consider the function 

D J Ferncindez C et al 

In order to have zg(z) E F, it has to verify 
m 

On the other hand, the action of the operator A+, given in (2.21), on lg) is 

m=O 

(5.1 1) 

(5.12) 

It is then clear that A+ is the operator whose realization in 3 is a multiplication by z. 
Let us now consider the function 

As [A ,  A'] # I ,  the abstract operator corresponding to the derivative is not A. Therefore, 
we have to find an operator B such that 

From here, we suppose that it has the form 

B = b'af (N)b N =uta 

where the function f is found to be 
1 

f(N) N ( l  t N ) '  
Indeed, we have 

then 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

We have then justified the choice of B in (3.3). 
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Appendix A. Computation of the measure 

In this appendix, we will evaluate h(x) ,  the inverse Mellin transform of the function 

(A.1) 
1 S 

g(s) = -(r(sVr(s + 1) = x x 

As is well known [ l l ] ,  a function h(x) and its Mellin transform g(s) are related through 

A Im 

Flgure A l .  The integration conlour for the inverse Mel l in  transform. 

The function g(s), given in (A.l), has poles at s = 0, -1, -2 , .  . . . To evaluate h(x) ,  

(A.3) 

The function g(s) has no singulan’ty along this contour. Then, according to the residue 
theorem 

let us consider the contour of integration given in figure A l ,  where 
1 R,, = n + $. 
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Taking the limit n 

D J Fernrindez C et a1 

CO, we have 

(A.5) 

First, we want to prove that the last integral in (AS) vanishes. Then, we will compute the 
sum of the residues. 

A l .  The integral along the line K M N P  

Let us consider an integral more general than the last one in (AS) 

where k > 0. We will show that this integral vanishes in the limit n -+ CO for certain 
values of k and e .  First of all, we have 

We have to evaluate the last integral in (A.7) for large values of R,, = n + f. Instead of 
computing the exact result. we will give the asymptotic value of such an expression. Let 
us put 

Using Stirling's formula 

r(z) - &zz-(*'')e-X z -+ 00 [phase zI < x - E  -= lt (A.9) 

we get 

E ( n ,  k, x ,  E )  * l:y IJi;;(R,eie)(-i/2)tR,up(iB) exp(-R,#)r exp(-Rn(logx) cos 0) dB 

Zl2 < (ZX)'/~R;~/~ 1 exp(-u, sinu) du. (A.lO) 
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In the last step, we took into account the fact that the integrand is always positive, as well 
as the fact that exp(-kR,@sinO) < 1 in [ (n /2) ,~1 .  The parameter U,, which appears in 
(A.lO), is 

U,  = Rn[k log Rn - k - I o ~ x ] .  (A.ll) 

Notice that U, > 0 if n is big enough. In this context. and for (Y E [0, x/2], 

2 U  - u.sina 6 - 2 w .  (A.12) n 

Therefore, we get 

K B(n,  k ,  x ,  E )  < ( ~ K ) ~ / * R - ~ / * - - ( I  - e-""). 
2u. 

This result is independent of E and we then have 

H nt-k/2 
IA;.'I < 2Rit1 lim B(n,  k,x, E )  N --(2~)~''-. 

e-to k log n 

(A.13) 

05.14) 

We see that lime-,w IA;'I = 0 if 
(A.1). as k = 3, 8 = 1. Therefore, we have proved that 

6 k/2. In particular, this is true for g(s), given in 

- lim g(s)x-'ds = 0 
2 ~ i n + w  ' J  KLMNP 

and consequently 

(A.15) 

(A.16) 

A2. The sum of the residues 

Let us calculate the residues that appear in (A.16). Remembering one of the definitions of 
the gamma function 

(A.17) 

it is clear that the function ~ - ~ s ( r ( s ) ) ~  has a double pole at s = 0 and triple poles at 
s = -1, -2, -3,. . . . Let us first evaluate 

= - ~ o g ~ + 3 f ~ , m o ~ S + 1 ) = - ( 3 y + l o g x ) .  (A.18) 
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Let us now consider the triple poles 

1 . dZ Res [ S ( ~ ( S ) ) ' X - ~ ,  s = -n # 01 = - lim - [((s + n ) r ( ~ ) ) 3 ~ ~ - ~ ]  2 ,s+-n ds2 

= - x n [  1 ( - 2 l o g x  -n( logx) ' )  lim ~ ( s ) ~ + ( 6 + 6 n l o g x )  lim 2 .T'-" ,,--n 

(A.19) 

where a(s) = (s + n)r(s). Then, we have 

1 

where we have used well known properties of the gamma and psi functions [12].  The 
residue (A.19) is 

(A.20) 
We can finally write the function h ( x )  in (A.16): 

logx  
0&(2,2; - X )  - -oF2(1, 1; - x )  3Y x o o g x ) 2  h ( x )  = -- + 

Tl 2% Ir 

(A.21) 
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where 

“+I 

Y”+I = - Y 
k=1 

(A.22) 

and where y is Euler’s constant ( y  = 0.5772.. .). Due to the definition of Euler’s constant, 
the asymptotic behaviour of yn+i for large values of n is y.+l - log(1 + n). In addition, 
Czl(l/k)2 = 7r2/6. Therefore, the form of h(x) is essentially a sum of functions 
&(a, b;  - x )  multiplied by x and/or powers of logx. Notice that h(x) is singular at 
x = 0, indeed, 

1 
z-0 iz 

h(x) - - l o g x .  (A.23) 

Nevertheless, this is not a problem because the important objects are the measures dp(z) 
and du(z), given by 

dp(z) =oFz(l.2;r2)h(r2)rdrda =oFz(1,2;rZ)du(z) (A.24) 

which are well behaved for r --t 0. 

Appendix E. Order and type of the functions in F 

The order and type of an entire function [I31 give us information on the growth of the 
function at infinity. Let us consider an entire function 

The exponential function is used to measure the growth of f ( z )  or, more precisely, the 
growth of If(z)l. Suppose that there exist positive numbers w and k such that 

max If(z)l < exp(kr’) (B.2) 

for all sufficiently large r .  The greatest lower hound of the numbers p verifying (B.2) is 
called the order e of f(z); the greatest lower bound of the numbers k for which (B.2) holds 
is called the type of f (z )  and is usually denoted by U ,  Both e and u are greater than or 
equal to zero. 

The order and type of an entire function depend on the coefficients of its Taylor series 
expansion (B.1). Indeed, it can be proved that if f(z) is an entire function of order e. then 

lM=r 

In addition, if f ( z )  is an entire function of finite order e and type U ,  then 
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We are particularly involved with generalized hypergeometric functions 

D J Ferncinder C et a1 

, F , ( u ~ , .  . . , U,,; bi,  . . . , bq; Z) = , , F q ( ~ i ;  bj: Z) 

r(bd ... r(bq) r(at+n) ... r(a, t n ) z n  - - - r(al)  ... r ( a , ) ~ r ( b i + n ) . . . r ( b ~ + n ) n ! '  

Comparing this with (B.1). we have in this case 

(B.5) 

Let us compute the order and type of such functions. Using (B.3) with (B.6), and taking 
into account Stirling's formula, we get 

e =  lim (B.7) 
-n log n 1 

By definition Q > 0, then p 6 q + 1. A similar analysis shows that, for ,F,(ai: bj; 2"). the 
order is pS = s/(l + q - p ) .  

Let us consider now the type of ,F,(ai; bj; z): 

= - I = 1 + q  - P. 
e 

For the function ,F,,(ai; bj; z'), we get U, = s/e3 = 1 + q - p .  In the particular case of 
oFz(1,Z; 1z['), we find e = 3 and U = 3. Then the function 4- has 9 = $ and 
U = (because if I f (z ) l  < Aexp(urQ) then I.Jml = JIT(T;TT 6 fiexp((uj2)rQ)). 
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